Обзорная статья: газовая промышленность

Продукты переработки газа и сфера их применения

В процессе добычи и очистки газа, помимо основного своего использования как топлива (80%), из составляющих компонентов получают несколько продуктов переработки.

Клей Фенопласт который производят после переработки метана

При переработке выделенного метана, химическим путем извлекают его главную производную – формальдегиды. Данные компоненты используют в производстве фенопластов, которые широко применяются при производстве строительного материала (прессовка фанеры, производство ДВП, теплоизоляция на основе пенопласта и минеральной ваты).

Смолы. Данный компонент широко используется для производства лаков и строительных красителей.

При первичной очистке ископаемого выделяют гелий, который используется при производстве высокоточного (часто медицинского) оборудования и в космической отрасли.

При производстве сельскохозяйственных удобрений используют аммиак, производную составляющую, выделяемую из водорода. Пищевая промышленность использует данный компонент как натуральный канцероген. При разработке новых лекарственных форм используется водный раствор аммиака.

В основе производства полиэтилена и пластмасс находится такой продукт переработки, как этан.

Выделенный метанол используется как компонент транспортного топлива.

Кислоты. Легкая (бумажное и текстильное производство) промышленность использует выделенные из газа кислоты (уксусная) при производстве необходимых красителей.

В оборонном комплексе используется нитрат аммония, являющийся основой при производстве взрывчатых веществ.

Современные технологии переработки газа, экономия и рациональное использование ресурсов позволяют применять альтернативные виды топлива для удовлетворения увеличивающихся потребностей промышленности и населения в энергоносителях.

Продукты переработки

У многих людей слово «газ» ассоциируется с топливом и газовой плитой. На самом же деле применение его составляющих более обширно:

  • гелий – ценное сырьё, используемое в высоких технологиях, например при изготовлении медицинского оборудования и магнитных подушек для длительных поездок в общественном транспорте, при конструировании ядерных реакторов и космических спутников;
  • формальдегид, один из производных метана, – сырьё, играющее большую роль в производстве фенопластов (тормозные накладки, бильярдные шары) и смол, являющихся важным компонентом строительных конструкционных материалов (фанера, ДВП), лакокрасочных и теплоизоляционных изделий;
  • аммиак – используется в фармацевтической (водный раствор), сельскохозяйственной (удобрения) и пищевой (усилитель вкусовых свойств) отраслях промышленности;
  • этан – сырьё, из которого производят полиэтилен;
  • уксусная кислота – широко применяется в текстильной промышленности;
  • метанол – топливо для автотранспорта.

Добыча и переработка природного газа – процессы, благодаря которым эффективно развиваются важнейшие отрасли промышленности. Конечному потребителю газ поступает после тщательной обработки, его применение значительно улучшает условия быта.

Компоненты газовой сварки

Перед тем как будет начата газовая сварка, технология рекомендует подготовить все необходимые компоненты для ее проведения. Обязательно для работы потребуется специальный газ для пламени горелки. А вот какой выбрать газ стоит рассмотреть подробнее.

Кислород

Этот востребованный вид газа для проведения сварки и резки. Благодаря ему происходит моментальное воспламенение паров материалов с высокой горючестью. Особой популярностью пользуется сварка кислородом и пропаном. Этот метод позволяет получить прочный шов с высоким износом. Сварочный кислород выполняет роль катализатора плавления и резки заготовок из металла, он входит в состав горючей смеси.

Важно! Кислород помещается в баллоны под постоянным давлением, а при контакте с маслом самовоспламеняется. Чтобы этого не произошло, баллоны стоит хранить в месте, защищенном от солнца, а также их требуется периодически чистить от пыли, грязи

Кислород для сварки получают из обычного воздуха, который отделяется от СО2 и Н2О в воздухоразделительной установке. При проведении газовой сварки пропаном и кислородом используется три вида газа — высший (99,5%), 1 и 2 сорта (99,2 и 98,5 %).

Ацетилен

Ацетилен является газовой смесью, которая состоит из двух компонентов — H и O. Это бесцветное вещество, которое не имеет запаха, в его составе наблюдается небольшое содержание NH4 и H2S.

Обратите внимание! Газовая сварка и резка металлов с использованием ацетилена должна проводиться с максимальной осторожностью. Если во время процесса будет наблюдаться превышение показателей давления более 1,5 кг/см² и температуры больше 400°С, то смесь может взорваться

Ацетилен добывают при помощи диссоциации жидких углеводородов под воздействием электричества.

Заменители ацетилена

Стоит помнить, что сварка может проводиться не только пропаном и кислородом или ацетиленом, во время нее могут использоваться заменители последнего газа.

В качестве замены могут применяться следующие газы:

  • водород;
  • метан;
  • пропан;
  • керосиновые пары.

Температурные показатели их горения находятся в пределах 2400-28000С. А при горении ацетилена обычно наблюдается 31500С. При использовании заменителей рекомендуется дополнительно применять проволоку с содержанием марганца и кремния, которая будет раскислять сталь. А вот для плавящихся цветных металлов потребуется флюс.

Использование проволоки и флюса

Присадочная проволока и сварочный флюс являются необходимыми элементами, которые применяются при проведении газового сварочного процесса. Оно позволяет получить качественный и прочный шов.

Для проведения сварки рекомендуется использовать присадочную проволоку без масла и краски, на ней не должно быть признаков коррозийного поражения. Порог плавления этого материала должен быть равен или ниже плавления свариваемого металла.

Для плавящихся металлов необходимо использовать флюс. При помощи него до начала сварки делается нанесение на металл или проволоку. Далее флюс плавится и выдает плавкий шлак, который покрывает металлическое изделие поверхностно.

Технические стороны сварочного процесса

Техника газовой сварки имеет некоторые важные особенности, которые стоит учитывать во время ее проведения. Основное положительное свойство, которое выделяют многие сварщики, состоит в том, что .тот метод сваривания позволяет производить швы в любых пространственных положения — от потолочного до нижнего.

Обычно сложности возникают при создании потолочных швов, потому что в данном случае расплавленный металл требуется поддерживать и быстро распределять по всей длине сварного соединения. Это осуществляется при помощи повышенного давления газовой смеси, которая создается благодаря пламени.

Самыми популярными видами швов при проведении этого метода сварки считаются стыковые. Но эта технология никак не дружит с соединениями внахлест, тавровыми швами. Это связано с тем, что для двух видов швов требуется чрезвычайно сильное нагревание металлической основы. Также это может привести к повышению риска коробления.

Если края у заготовок тонкие и отбортованные, то их необходимо варить без применения присадочной проволоки. Во время сварки получаются непрерывные или прерывистые швы, которые могут иметь одно- или многослойную структуру. Но перед началом сварочной технологии рекомендуется провести тщательное очищение краев и поверхностей заготовок из металла.

Важно! Техника и технология газовой сварки предполагает особое обращение с газовой горелкой. А именно при проведении процесса необходимо удерживать пламя на расстоянии около 5 мм от конца ядра, не касаясь металлической поверхности

Под давлением газовых смесей на жидкий металл образуется сварочная ванна, они производят раздувание металлической основы по краям. Далее присадочная проволока погружается в сварочную ванну. Степень интенсивности нагрева можно изменять.

Выполняется это при помощи изменения угла наклона медного мундштука горелки к поверхности заготовки

Стоит обратить внимание на зависимость — чем больше угол наклона, тем выше степень нагревания металла от пламени

Мундштук горелки обычно продвигается вдоль шва. Одновременно с этим требуется следить за состоянием сварочной ванны. Металл в ней должен быть защищен давлением газов от нежелательного воздействия окружающего воздуха. Данные действия производятся для защиты металлических изделий от оксидной пленки.

Где применяют газовые гидраты?

Малоизвестный, но очень перспективный энергоресурс можно применять не только для топки печей и приготовления пищи. Результатом инновационной деятельности можно считать технологию транспортировки природного газа в гидратном состоянии (HNG). Звучит очень сложно и страшно, но на практике все более, чем понятно. Человек придумал «упаковывать» добытый природный газ не в трубу и не в резервуары танкера СПГ (сжижение природного газа), а в ледяную оболочку, проще говоря — делать искусственные газовые гидраты для транспортировки газа к потребителю.

Капитальные затраты на организацию транспорта 4-х млрд. куб. м. природного газа по различным типам технологий.

При сопоставимых объёмах поставок товарного газа эти технологии потребляют на 14% меньше энергии, чем технологии сжижения газа (при перевозке на небольшие расстояния) и на 6% меньше при перевозках на расстояния в несколько тысяч километров, требуют наименьшего снижения температуры хранения (-20 градусов C против -162). Обобщая все факторы, можно сделать вывод — газогидратный транспорт экономичнее транспорта в сжиженном состоянии на 12−30%.

Подводя итоги можно сказать, что газовые гидраты являются основным энергоресурсом будущего в мировом масштабе, а также несут колоссальные перспективы для нефтегазового комплекса нашей страны. Но это очень дальновидные перспективы, эффект от которых мы сможем увидеть через 20, а то и через 30 лет, не ранее.

Не принимая участие в масштабной разработке газовых гидратов, российский нефтегазовый комплекс может столкнуться с некоторыми значительными рисками. Увы, сегодняшние низкие цены на углеводороды и экономический кризис все больше и больше ставят под вопрос исследовательские проекты и начало промышленной разработки газовых гидратов, особенно в нашей стране.

Нюансы с разными швами и разными металлами

Горизонтальные швы формируются с использованием правого способа газовой сварки. Бывают ситуации, когда процесс ведут справа налево с мундштуком внизу ванны, а проволокой сверху. Так шов образуется быстрее и легче, а расплавленный металл в ванне не стекает вниз.

Вертикальные швы наоборот, производятся левым способом с направлением снизу-вверх. Если металл толстый, применяют шов с двойным валиком.

Потолочные швы – одни из самых сложных для исполнения. Здесь нужно сначала нагреть кромки заготовки, затем до момента их оплавления в ванну помещают проволоку, которая быстро оплавляется.

Жидкий металл в ванне удерживается от стекания вниз давлением газов из горелки. Сварку делают правым способом. Лучше всего использовать технологию многослойных швов с несколькими проходами.

Легированные стали бывают с очень разными составами. Поэтому единого метода газовой сварки для них нет и не может быть. Если сплав жаропрочный нержавеющий, детали из него варятся с помощью проволоки с содержанием никеля и хрома.

Встречаются отдельные марки, которые можно варить только с применением молибдена в составе присадочной проволоки.

Медь и ее сплавы всегда требуют сильного пламени. Во время расплавления она чрезвычайно текучая, поэтому зазор нужно делать минимальным. Помимо проволоки из меди, в работе применяются флюсовые смеси для раскисления металла шва.

Латунь – весьма непростой металл для работы из-за его состава. Здесь высокий риск образования пор в сварочном шве из-за летучести цинка. Этот риск можно значительно снизить, подавая в смеситель горелки больше кислорода и применяя латунную проволоку в качестве присадки.

Бронза – еще один капризный сплав

Во время сварки важно не выжечь из состава его важные элементы: олово, кремний и алюминий. Поэтому пламя должно быть восстановительное, а присадка – бронзовая с добавкой кремния, который поможет в дальнейшем раскислению шва

Технологический процесс добычи природного газа

Основное оборудование для добычи природного газа – это буровой станок. Он представляет собой долото, подвешенное на канате, который то опускали, то поднимали благодаря вороту. Их называли ударно-канатными машинами. Но сейчас такие машины уже практически не используются: они медленно пробивают отверстие в камне, при этом много энергии расходуется впустую.

Более выгодный и быстрый другой метод бурения — роторный, при нем скважина высверливается. К специальной ажурной четырехногой вышке из металла высотой 20-30 метров подвешена стальная толстая труба. Она вращается с помощью ротора. На нижнем конце этой трубы находится бур. Постепенно, по мере увеличения глубины скважины, трубу удлиняют. Для того чтобы разрушенная порода не забивала скважину, то в нее через трубу с помощью насоса нагнетают специальный глинистый раствор. И этот раствор промывает скважину, удаляет из нее вверх по щели между стенами и трубой скважины разрушенные песчаник, глину, известняк. Плотная жидкость одновременно поддерживает стенки скважины, и не дает им обрушиться.

Но у роторного бурения есть свои минусы. Чем глубже будет скважина, тем труднее работать двигателю ротора, и тем медленнее будет происходить бурение. Но со временем та вода, которая лишь вымывала разрушенную породу из скважины, начала и вращать бур. Сейчас до того как достигается дно скважины, этот глинистый раствор вращает турбину, которая прикреплена к буровому оборудованию.

Этот инструмент назвали турбобуром, усовершенствовали, и сейчас опускают в скважину несколько турбин, которые насажены на один общий вал. Природный газ на поверхность земли поднимается благодаря естественной энергии — стремления в зону с самым меньшим давлением. Так как газ, который получен из скважины, имеет большое количество примесей, то сначала он отправляется на обработку. Возле некоторых месторождений сооружаются установки комплексной подготовки газа, и тогда газ из скважин сразу же отправляется на газоперерабатывающий завод.

Бурение – это основная работа при добыче газа. Газ не требует отделения от окружающего массива взрывчаткой или машинами, не требует поднятия на поверхность земли в вагонетках или конвейером.

Кроме бурения скважин, газ можно получить и методом добычи «вслепую». Газ заключен в очень мелкие поры, ими обладают некоторые горные породы. Природный газ находится на глубине от 1000 метров до нескольких километров. После того, как проведены геологоразведочные работы, когда известно, где расположены залежи, начинается процесс добычи газа, извлечение его из недр, сбор и подготовка к транспортировке.

Транспортировка природного газа на нефтеперерабатывающие заводы и электростанции осуществляется по автомобильным и железным дорогам, газ перевозят в танкерах или в цистернах. Но часто газ можно подавать по трубам на любые расстояния. Газопроводы, представляющие собой магистрали из стальных труб, которые уложены не очень глубоко в земле, могут протягиваться на тысячи километров.

Нюансы сооружения медного газопровода

Трубы из меди сравнительно недавно стали применяться для устройства газовой сети. Допускается использование тянутых и холоднокатаных медных труб с толщиной стенки не меньше 1 мм для осуществления внутренней разводки.

Медь — довольно дорой материал, однако, его применение оправдывается простотой проведения монтажных работ и возможностью создавать линии сложной конфигурации.

Еще один неоспоримый факт в пользу медных труб — это их привлекательный внешний вид. Так как газопровод нельзя скрывать в нишах стенах и коробах, то стальные конструкции могут легко испортить внешний вид помещения, тогда как медные трубы только обогатят интерьер.

Изделия из меди обладают следующими позитивными качествами, которые могут оказаться решающими при их выборе для устройства газовода:

  • высокая пластичность, благодаря чему реализуется возможность прокладки линий сложной конфигурации;
  • простота и легкость ведения монтажных работ, изделие легко режется, соединение труб осуществляется путем применения пресс-фитингов или пайкой;
  • привлекательный внешний вид;
  • долговечность — срок эксплуатации при соблюдении технологии достигает 100 лет;
  • стойкость к повреждениям механического характера и противостояние воздействию химически активных соединений.

Есть у медных труб и свои слабые стороны, главная из которых состоит в высокой теплопроводности, что способствует образованию конденсата. А также их прочность куда ниже, чем стальных, а цена при этом гораздо выше.

С технологий пайки медных труб, обеспечивающей герметичное соединение, ознакомит следующая статья, которую мы рекомендуем прочесть.

Когенерация в малых масштабах

Мини-ТЭЦ, работающие на газообразном топливе, начали появляться в России относительно недавно, но тем не менее продемонстрировали превосходную эффективность. На сегодняшний день на территории РФ действуют более 200 установок, большая часть которых размещена в отдаленных регионах. Основной аргумент для установки мини-ТЭЦ на объекте — требование полной автономности или невозможность подключения к магистральным линиям энергообеспечения. В этом случае вопрос об экономической целесообразности выводится на второй план.

Преимущество мини-ТЭЦ заключается в том, что станция производит электрическую энергию, которая почти вдвое дешевле сетевой. Тепловая же энергия и вовсе является бесплатной в производстве, а потому ее потребительская стоимость состоит исключительно из затрат на обслуживание оборудования и транспортировку на небольшие расстояния.

Перспектива использования мини-ТЭЦ повсеместно — всего лишь вопрос времени. Так, при строительстве жилых комплексов нового поколения, вопрос о подключении к централизованным источникам тепла и электроэнергии вовсе не стоит. Поскольку качество и режим подачи этих ресурсов оставляют желать лучшего, новостройки комплектуются собственными энергосистемами, от чего выигрывают и владельцы объектов недвижимости, и их пользователи.

Переустройство линий инженерного обеспечения для использования мини-ТЭЦ связано с рядом трудностей. В первую очередь — это вопрос об объемных капиталовложениях. Реструктуризация отрасли энергообеспечения малого предприятия с тепловой и электрической нагрузкой в 2 МВт обойдутся администрации в 20 млн. рублей. Вторая причина низкого распространения — проблема отсутствия собственной сети инженерных коммуникаций: при отказе от центральных источников тепло- и электроснабжения предприятию придется либо выкупать всю имеющуюся инфраструктуру, либо создавать собственную. Рентабельно это только при условии продажи энергоресурсов сторонним потребителям.

Расходные материалы

Вопрос об использовании того или иного инертного газа очень важен, поэтому сделать правильный выбор можно, только зная об особенности каждого из них.

Кислород – активный газ, который характеризуется полным отсутствием какого-либо запаха и цвета в ходе газосварки. Берет на себя функцию катализатора всех процессов расплавления металла. Содержание кислорода в герметичных баллонах под высоким давлением — это очень непростое, но всё же выполнимое действие. Главное, точно соблюдать все требования техники безопасности в работе с этим газом

К примеру, важно избегать контакта с техническим маслом, поскольку это может вызвать возгорание

В помещениях, где находятся газовые баллоны, не должно быть прямого ультрафиолетового света и источников тепла.

Кислород для выполнения сварки выделяют из обычного воздуха при помощи специального оборудования, по степени чистоты его разделяют на три категории:

  • высший сорт — концентрация газа составляет 99,5%;
  • первый сорт — от 99, 2%;
  • второй сорт — от 98,5%.

Ацетилен – еще один популярный газ, используемый в газосварке, а также нарезке металлов. Как и кислород, он не имеет никакого аромата и оттенка, производится из воды и карбида кальция. Следует отметить, что ацетилен — довольно дорогой газ, но он имеет весомое преимущество в сравнении со всеми остальными расходными материалами. Оно связано с температурой горения, которая выше, чем у пропана или метана. Однако следует иметь в виду, что при длительном нагревании и постоянном повышенном давлении этот газ может взорваться.

Чтобы варить металл, нужен флюс, а также присадочная проволока — они нужны для создания сварочного шва. Перед работой присадочную проволоку нужно очистить от любых загрязнений и признаков ржавчины. Вместо проволоки можно использовать металлические полосы из того же материала, из которого выполнены заготовки под сварку.

Флюсы используются для защиты сварочной ванны от неблагоприятного действия внешних факторов. Обычно в ход идет борная кислота или бура. Флюс наносится на приваренные заготовки либо непосредственно на присадочную проволоку.

Происхождение и состав газа

Научное определение природного газа – это смесь газов различного химического состава на основе углеводородного соединения. В зависимости от месторождения, состав углеводородов разнится в количественном соотношении, основными компонентами природного газа служат следующие химические элементы:

  • Метан.
  • Бутан.
  • Этан.
  • Пропан.
  • Водород (сероводород).
  • Углерод (в соединении).
  • Азот, гелий и пр.
  • Примеси.

При добыче сланцевого газа, залежи которого находятся на глубине 10 тыс. м, в составе ископаемого сырья находится большее количество различных углеводородных соединений.

Поэтому невозможно научно обосновать единственную общую формулу для обозначения состава ископаемого.

В природе газ бесцветен и не имеет никакого запаха, его присутствие в породе определяется искусственным методом с помощью оборудования. В болотах часто на поверхности выделяют болотный газ специфического запаха. Однако это не запах ископаемого, а запах растительных компонентов конкретной среды (брожение, гниение растений и пр.).

Особенности газовых труб из полиэтилена

Наряду со стальными конструкциями в последнее время активно используются иные изделия, для изготовления которых применяются полимерные материалы.

Монтажные работы по устройству полиэтиленового газопровода выполняются куда быстрее, чем в случае со стальными трубами, что объясняется отсутствием резьбовых соединений и необходимостью применения тяжелого электро- и газосварочного оборудования.

Методы соединения полимерных конструкций

На сегодняшний день качество полиэтиленовых труб дает возможность устраивать надежные подземные газопроводы, срок службы которых достигает 80-90 лет. Чаще всего сеть из полиэтиленовых материалов устраивают для подведения линии к частным домам.

Помимо этого, такие изделия могут быть использованы для транспортировки газа в системах, давление которых не превышает 1,2 МПа.

Герметичность соединения полиэтиленовых труб надлежащего качества обеспечивается сваркой, которая может быть выполнена двумя способами:

  1. Трубы, края которых предварительно разогреты специальным паяльником, монтируются встык. Подобным образом происходит и монтаж фитингов. Разогрев должен выполняться до достижения вязкости.
  2. Края изделия заводятся в специальную соединительную муфту, внутри которой присутствуют нагревательные элементы. Подающееся напряжение обеспечивает разогрев элементов и фиксацию труб в фитинге. Полученный с помощью электромуфтовой сварки стык выдерживает давление до 16 МПа.

Если решается вопрос об индивидуальном подключении к газовой сети, то лучше предпочесть более дешевый вариант монтажа, полагающий сварку встык.

При коллективной газификации коттеджных поселков, дачных обществ, деревень лучше прибегать к более дорогой электромуфтовой сварке полиэтиленовых элементов газопровода. Именно этот способ обеспечивает максимальную герметичность и надежность соединения.

Характеристики полиэтиленовых труб

Трубы из полиэтилена производятся диаметром от 20 до 400 мм, стандартные типоразмеры маркируются SDR11 и SDR17,6. В зависимости от класса прочности различают изделия с маркировкой ПЭ80 (черного цвета с желтыми вставками) и ПЭ100 (черного цвета с голубыми вставками).

Для индивидуальной газификации и обустройства трубопровода низкого давления подходят полиэтиленовые трубы ПЭ80. В свою очередь, изделия ПЭ100 имеют более высокую прочность, и допускается их использование для создания газоводов с давлением до 1,2 МПа.

Нужно учесть, что монтаж труб ПЭ100 потребует больших усилий, так как их придется разогревать до более высокой температуры, однако, эти затраты компенсируются отличным качеством соединения.

Достоинства и недостатки газовых полимерных труб

Популярный ранее стальной трубопрокат заметно вытесняется полиэтиленовыми аналогами.

Этому факту есть немало разумных объяснения, которые кроются в полезных качествах ПЭ труб:

  1. Хорошая коррозионная стойкость, возможность выдерживать воздействие химически агрессивных соединений.
  2. Высокая прочность, стойкость к механическому воздействию.
  3. Отличная пропускная способность, обеспечивающаяся отсутствием шероховатостей. Если провести сравнение полиэтиленовых изделий со стальными такого же диаметра, то пропускная способность газовода из ПЭ труб будет на 30% выше.
  4. Простота производства монтажных работ. Сварка ПЭТ не требует наличия тяжелого газо- и электросварочного оборудования, как при монтаже стального газопровода. Кроме этого трубы из полиэтилена легко гнутся, что позволяет обходить препятствие, возникающие на пути газопровода.
  5. Невысокая стоимость полиэтиленовых изделий в сравнении с аналогичными из меди и стали.

Полиэтиленовые трубы довольно активно используются в подключении газа к частному дому. Это обусловлено рядом положительных качеств. Однако есть некоторые особенности по их применению, которые ограничивают или даже полностью исключают возможность возведения газовой сети из полиэтиленовых конструкций.

Так, нельзя использовать ПЭТ в сейсмических активных зонах, в районах, где отмечается снижение температуры до -45 градусов, в газопроводах с давлением более 1,2 МПа.

Кроме этого, полиэтиленовые трубы совсем несовместимы с прокладкой сети в тоннелях и коллекторах, тогда как стальные допускают такой вариант. Нужно учесть, что при нагреве полиэтилена до 80 градусов происходит его деформация с последующим разрушением.

Не рекомендуется использование ПЭТ для создания наземных газоводов, так как материал быстро разрушается под воздействием ультрафиолета. Если же принято решение об устройстве наземного трубопровода, то трубы нужно покрыть специальным защитным полимерным составом.

Слабые места и нюансы технологии

Если начали с плюсов, будет честным остановиться и на минусах. Недостаток в скорости нагревания металла – она низкая.

Кроме того, рабочий участок при таком методе «распластан» – уж очень большая зона нагревания металла, из-за чего теряется много тепловой энергии. Имеет место и такое неприятное явление как коробление.

Поэтому, если толщина вашего металлического листа больше шести миллиметров, начинайте думать о применении газовой сварки где-нибудь в другом месте. А толстый край лучше варить, к примеру, дуговым способом.


Инжекторная и безинжекторная горелка.

Газовая сварка – не самый дорогой способ сварки, это общеизвестно. Но газ для сварки – ацетилен и кислород, которые любят использовать в качестве сварочной газовой смеси, стоят все-таки дороже, чем электричество.

А если добавить довольно высокие риски взрывов и серьезную пожар опасность, которые мгновенно возникнут при неправильном обращении с горючими жидкостями, газами, кислородными баллонами и элементарным карбидом кальция, энтузиазм немного снижается.

Технология газовой сварки отлично подходит для широкого спектра сварочных работ: от соединения деталей из алюминия и стали до работы по бронзе и чугуну.

Сразу отметим, что газовой сварке по силам практически все металлы, включая такие капризные как медь, свинец или чугун: они варятся легче именно газовой технологией, чем какими-либо другими.

Развитие разработки газогидратов в мире

Краткая предыстория Начало исследований газовых гидратов восходит к 1800-м годам, когда ученые впервые получили газогидраты в лабораторных условиях. В последующие долгие десятилетия лабораторные эксперименты продолжались, но никто не ожидал, что газогидраты могут формироваться в естественной среде. Затем, в 1930-х годах, в газопроводах были обнаружены техногенные газогидраты, которые иногда блокировали потоки природного газа. Это спровоцировало новый виток научных исследований, направленных на предупреждение образования газогидратов в процессе транспортировки природного газа. Наконец, в 1960-х годах началась разработка Мессояхского месторождения в Западной Сибири, которая позволила открыть природные газовые гидраты. В 1970-х годах они были обнаружены в образцах из скважины на Северном склоне Аляски и на дне Черного моря. Результаты исследований 1980-х годов привели к тому, что газовые гидраты стали рассматриваться как новый и потенциально обширный источник метана. И с 1990-х годов в мире проходят целенаправленные и широкомасштабные программы по обнаружению и разработке газовых гидратов.Технологии обнаружения газогидратных месторождений Существующие технологии обнаружения газогидратных месторождений опираются на использование свойств гидратов и гидратонасыщенных пород (таких как высокая акустическая проводимость, высокое электросопротивление, пониженная плотность, низкая теплопроводимость, низкая проницаемость для газа и воды). К методам обнаружения газогидратных залежей относят: «сейсмическое зондирование, гравиметрический метод, измерение теплового и диффузного потоков над залежью, изучение динамики электромагнитного поля в исследуемом регионе и др.». В текущем периоде эти методы активно развиваются и совершенствуются.Сейсмическое зондирование Наиболее распространенным методом обнаружения газогидратных месторождений является стандартная и высокочастотная сейсмическая разведка. Стандартная сейсморазведка проводится на частотах 30–120 Гц и имеет разрешающую способность до 12–24 м; высокочастотная – проводится на частотах от 250–650 до 1 200 Гц при разрешающей способности до 1–2 м. По данным двухмерной (2-D) сейсморазведки при наличии свободного газа под гидратонасыщенным пластом определяется нижнее положение гидратонасыщенных пород. Однако такой метод не позволяет получить ответы на ряд важных вопросов, в том числе о степени гидратонасыщенности пород. Более качественные результаты дает метод высокого разрешения трехмерной (3-D) сейсморазведки: он позволяет определить верхнюю и нижнюю границу гидратонасыщенных пород, а также концентрацию гидрата в породах. Данные сейсмического зондирования дополняются с помощью других методов анализа. Верными источниками дополнительной информации служат геофизические исследования пробуренных скважин, а также отбор и комплексный анализ образцов горной породы, извлеченной из скважины непосредственно на месторождении.Геофизические измерения Этот метод более чувствителен к обнаружению газогидратов, однако его использование сопряжено с большими, чем при сейсморазведке, техническими трудностями.Комплексный анализ нефтегазовой системы Комплексный анализ нефтегазовой системы может быть охарактеризован как наиболее передовой метод. Он включает в себя изучение осадочных пород, анализ каротажной диаграммы, качественную и количественную интерпретацию данных сейсморазведки и анализ других данных о нефтегазовой системе.Электромагнитная разведка Перспективным дополнением к сейсморазведке для неразрушающего обнаружения газогидратов в пористых породах является электромагнитная разведка. Министерство энергетики США планирует проводить ее с 2015 года.К настоящему времени в мире открыто уже более 220 месторождений газогидратов (рис. 3). Они обнаружены вблизи берегов США, Канады, Коста-Рики, Гватемалы, Мексики, Японии, Южной Кореи, Индии и Китая, а также в Средиземном, Черном, Каспийском, Южно-Китайском морях. Ожидается, что значительные запасы газогидратов могут находиться в Аравийском море, вблизи западного побережья Африки, у берегов Перу и Бангладеш.

Ремонт газовых скважин

Первоочередной задачей отрасли стало и увеличение межремонтного периода – срока, который проходит между 2 плановыми мероприятиями по починке и замене сломанных деталей.

Поставщики оборудования готовы предложить сразу несколько новых технологий текущего и капитального ремонта – например, мостовые пробки. Они применяются в ремонтно-изоляционных типах работ, когда сотрудникам требуется вывести из эксплуатации только некоторые пути и отключить отдельные пласты. Так, разбуриваемые мостовые пробки позволяют провести временную консервацию газовых скважин без ущерба их состоянию, перекрыть дефекты и частично или полностью изолировать нижележащие каналы.

Также при ремонтных работах активно используются методы промывки скважин, которые позволяют избавиться от т.н. «песчаных пробок» – естественных продуктов распада горных пород. Они забивают колонну, препятствуют движению «голубого» топлива на поверхность и способствуют торможению добычи газа в целом. При этом применение промывочных растворов и пенных систем не гарантирует, что загрязнение не повторится вновь.

В таком случае на помощь придет способ промывки песчаной пробки газожидкостной смесью, состоящей из пенообразующей жидкости и газа низкого давления. Он доставляется из соседней скважины или газопровода. После смешивания компоненты вновь разделяют на жидкую и газообразную форму, после чего одновременно подают под большим давлением во внутреннюю полость используемой для ремонта трубы. Максимального эффекта получится добиться, если она будет относиться к категории колтюбинговых (гибких и непрерывных) установок.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Дом своими руками
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector